The simplicial model of Univalent Foundations (after Voevodsky)
نویسندگان
چکیده
We present Voevodsky’s construction of a model univalent type theory in the category simplicial sets. To this end, we first give general technique for constructing categorical models dependent theory, using universes to obtain coherence. then construct (weakly) universal Kan fibration, and use it exhibit Lastly, introduce Univalence Axiom, several equivalent formulations, show that holds our model. As corollary, conclude Martin-Löf with one universe (formulated terms contextual categories) is at least as consistent ZFC two inaccessible cardinals.
منابع مشابه
Univalent foundations as structuralist foundations
The Univalent Foundations of Mathematics (UF) provide not only an entirely non-Cantorian conception of the basic objects of mathematics (“homotopy types” instead of “sets”) but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a prag...
متن کاملUnivalent Foundations Project
While working on the completion of the proof of the Bloch-Kato conjecture I have thought a lot about what to do next. Eventually I became convinced that the most interesting and important directions in current mathematics are the ones related to the transition into a new era which will be characterized by the widespread use of automated tools for proof construction and verification. I have star...
متن کاملUnivalent Foundations and the UniMath Library
We give a concise presentation of the Univalent Foundations of mathematics underlining the main ideas (section 1), followed by a discussion of the large-scale UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations, and the challenges one faces in designing such a library (section 2). This leads us to a general discussion about the links between architectur...
متن کاملHomotopy Type Theory: Univalent Foundations of Mathematics
Homotopy type theory is a new branch of mathematics, based on a recently discovered connection between homotopy theory and type theory, which brings new ideas into the very foundation of mathematics. On the one hand, Voevodsky's subtle and beautiful"univalence axiom"implies that isomorphic structures can be identified. On the other hand,"higher inductive types"provide direct, logical descriptio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2021
ISSN: ['1435-9855', '1435-9863']
DOI: https://doi.org/10.4171/jems/1050